CC读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

欧叶进入答辩会现场,将她的博士论文投影到屏幕上。

“弗拉蒙特教授,努曼伯格教授,汉克斯教授,下午好。”欧叶礼貌的说到,瞟了眼旁听席的沈奇和林登施特劳斯。

主答辩官弗拉蒙特教授是一张扑克脸,他不苟言笑的说到:“欧,这是你的博士研究生第四学期。”

欧叶点点头:“是的。”

弗拉蒙特教授为人严厉,沈奇为欧叶捏了把汗。

不过欧叶入场之后发挥平稳,并没有虚,这是个好兆头。

弗拉蒙特教授:“欧,你的博士论文《耶斯曼诺维奇猜想的证明》,我们三位答辩官已看过,接下来将由你进行3到5分钟的陈述,然后我们会提问。”

欧叶:“好的。”

3到5分钟的陈述?沈奇有些意外,正常情况下博士研究生的开场陈述时间在15-20分钟之间。

林登施特劳斯扭头笑了笑,他的眼神告诉沈奇:我们很宽容,因人而异。

欧叶手持翻页笔,切换她博士论文的PPT

欧叶切到第3页:“这个,卢卡斯序列。”

欧叶在第4页不做停留,直接切到第5页:“这个,卢卡斯偶数,等价。”

PPT页码显示有101页,欧叶平均5秒钟过一页。

三位答辩官并未提出任何异议,就静静的看着欧叶飞快的刷PPT。

Power-Point,这是真正的PPT……沈奇从未见过如此简洁的PPT汇报,而PPT的精髓正是如此:强烈的观点。

制作PPT的要点在于突出每一页的重点,PPT汇报者在有限时间内须用最精炼的语言表达最强烈的观点。

欧叶的PPT表达精炼到极致,101页,她5分钟就陈述完毕,语言表达风格跟平常类似,只说重点不磨叽。

“OK,谢谢你的陈述,欧,接下来进入提问环节。”弗拉蒙特教授率先发问,他说到:“你刚才提到了卢卡斯序列,n(α,β)=α^n-β^n/α-β,其中n为正整数,这个定义没问题,这是前提。那么我要问的是,基于这个定义前提,如何反向求出un(α,β)的本原素除子?”

弗拉蒙特教授这个问题是个陷阱啊……沈奇已将欧叶的打印版论文过了一遍,反向求出un(α,β)的本原素除子是个逻辑陷阱,因为un(α,β)不具备本原素除子。

欧叶神志清醒反应灵敏,她答到:“无法求出。”

弗拉蒙特教授追问:“为什么?”

欧叶切换页,操作翻页笔的激光照射到un(α1,β1)=±un(α2,β2),并同步解释:“它不具备,本原素除子。”

“是吗?你确定?”弗拉蒙特教授继续追问。

“我确定。”欧叶无比坚定。

“下面由努曼伯格教授、汉克斯教授提问。”弗拉蒙特教授不再发问,他低头在答辩记录纸上写写画画。

努曼伯格教授长着一张圆脸,秃顶,笑眯眯像是个白人版的弥勒佛,他问到:“欧,关于引理1,我并不是太明白你取5≤n≤30且n≠6的依据是什么?”

“嗯。”欧叶早有准备,她切换页,这页引人注目的重点是方程(11):(2k+1)^x±(2k(k+1)))^y√-2k(k+1)=±(1±√-2k(k+1))^z

“给定正整数k,无z≥3的正整数解。”欧叶说到。

“OK,我暂时没有问题了。”努曼伯格教授低头记录,应该是在给欧叶打分。

第二个问题一问一答不过一分钟,但旁听的沈奇知道这个问题绝没有看上去那么简单。

如果(x,y,z)是方程(11)的正整数解,根据前提定义可知1+√-2k(k+1)与1-√-2k(k+1)形成卢卡斯偶数。

由方程(11)可得一个新方程,即欧叶论文中的方程(12),可以验证uz(1+√-2k(k+1),1-√-2k(k+1))没有本原素因子。

再由BHV定理可得,不存在z≥3的正整数解(x,y,z),回到前提定义,若使得un(α,β)不具有本原素除子,则n须取5≤n≤30且n≠6。

逻辑上挺绕的,欧叶的回答“给定正整数k,无z≥3的正整数解”属于一锤定音的小结性质,她心中明白这个逻辑,才能用一句话总结由这个逻辑推导出的核心结论。

让欧叶长篇大论的讲出全套推导逻辑,那她得讲一整天。

好在这里是普林斯顿,而且三位答辩官事先研究过欧叶的论文,他们都是着名数学教授,一叶知秋,答辩人一两句关键答辩词就足以让三位答辩官给出分数。

这时由汉克斯教授发言:“我来说几句吧,欧,你证明了不存z≥3,即z要么为1要么为2,。而我基于瑞安原则计算出z可以取1或2,所以我认为你对耶斯曼诺维奇猜想的证明不成立。”

此问一出,欧叶惊呆了:“……”

沈奇惊呆了,瑞安原则什么鬼?

林登施特劳斯教授惊呆了,z必须为2,z只能为2不能取1!欧叶的结论是我确认过的,不会错的!

的条件满足,代入前面的式子,才能证明方程a^x+b^^z仅有整数解(x,y,z)=(2,2,,2),,即耶斯曼诺维奇猜想的完全证明成立。

或1,这个结论如果成立,将推翻欧叶的博士论文,耶斯曼诺维奇猜想依旧未能被完全证明,欧叶现在做的工作,和耶斯曼诺维奇本人几十年前的证明工作没有本质区别。

我努力了两年得来的成果不要被推翻呀!欧叶急了,脸色忽白忽红,她紧握双拳高声辩论:“汉克斯教授,请看我论文的第92页到101页,对于S中的任意(x,y,z)都存在唯一的有理数l满足代数整数环!在方程(22)的两边模2(n+1)得2∣x,再模2n(n+1)+1得4∣x,依此类推,的情况,所以z只能取2!”

欧叶忽然爆发,三位答辩官吓了一跳,汉克斯教授的笔不慎掉落地面。

“这……暴走的小叶子?”沈奇也受到惊吓,他从未见过欧叶如此激动,这大概是欧叶得病之后一口气说的最长的一段话,有理有据有真相,还挺6的。

最快更新阅读,请访问 请收藏本站阅读最新小说!

CC读书推荐阅读:我的同居房客都是绝色美女最佳神医女婿地府我有亿点背景噬天龙帝官路仕途:重生后一路狂飙名门绅士①,新宠游戏选项睿智?我开局篡改选项!参加高考的我,和系统谈起了恋爱爱你时我在尘埃医官情瘦韩娱之魔女孝渊医笑倾城机车觉醒:开局觉醒重卡金刚我的纯情女上司暗牖踏星陆隐哀牢山寻死记冷冰冰的战神王爷堵门求我疼疼他极品神医重生七零:肥妻要翻身一拳赘婿重生香江之金融帝国女帝的现代生活喝醉后,女神让我忘了她我是导演,却拿着演员的技能人到中年,觉醒每日结算系统骄花炼神丹!御神兽!废材大小姐竟是绝世帝女你的来电我家大佬是神兽绝品高手混花都重生的李峰我的六个姐姐,由我来守护!捡漏全球珍宝,从美利坚开始太初灵境四合院:诸天人生送王船妖夏签到我的无敌人生变成女生后兄弟也跟风了反派:开局青梅试探我,一把戳穿开局觉醒敛尸人,家人集体后悔了打鬼子赵苟在行动刚武考完,你杀成修罗了?生存空间我的冷艳娇妻政府招待所李老板的故事我家都破产了,你们怎么还追我谍战:我能用不同的身份搞暗杀
CC读书搜藏榜:海贼王之最强冰龙皇上非要为我废除六宫邢先生的冷面女友战国混沌剑神的猴子猴孙们独享一吻成灾:帝少的77次锁情诸神来犯,我在现代重演神话神级狂医在花都都市之最强战神奶爸逍遥修真少年空间之归园田居重生之妃王莫属女导演的爱情电影重生后,我在都市杀疯了重生,我就是回来当厨神的湛少的替婚新妻韩娱之魔女孝渊迷彩红妆公主爱妻你别跑两界真武暗影谍云偏执首席放过我爱如星辰情似海百万调音师:我只好亲自上台了!祸害娱乐圈,你说自己是正经人?都市之邪皇狂少这个傀儡师有点那啥重生娱乐圈之女王至上乡村疯子致富路墨守陈规狂龙下山退休后她只想在娱乐圈养老重生九零恶婆婆商女谋夫回2001陪你长大我在梦里逐步成神变成女孩子,将高冷千金养成病娇亲情凉薄我转身自立门户我的世界,又要毁灭了重生后休了王爷重回1976,下乡当知青御膳房的小娘子重回七七种田养娃霞光升起金牌宠妃(系统)绯闻男神:首席诱妻成瘾我是导演,却拿着演员的技能邪医修罗:狂妃戏魔帝异世倾心财阀的快乐你不懂
CC读书最新小说:从乡镇科员到权利巅峰分手既无敌,我医武通天你哭啥裂土封王,从市井泼皮开始开局就分家,重生只为妻女巅峰神豪传楚君轶事开局:我用麻袋装钻石美食大赛:用华夏料理登顶世界无人扶我青云志,我以渣男踏山巅修仙从高二开始靠山石附体,官场横行我怕谁?前妻PK前女友,我在一旁喝大酒都市之风花雪月西北风云:六兄弟征程1939年穿到了特工总部身为尘民的我,却站在异能者巅峰关于我在娱乐圈找到爱人这件事全民转职:招募校花当混混梦魇列车重生官场之上一世我是江湖大佬氪命强化,可寿元每分钟都会增加我不当提款机后,校花全家跪求原谅穿越七九,我要娶祖孙三代的女神望断天涯路1高武:体内有个撸铁馆,肉身成圣至尊渣男:为兄弟消费,万倍返利觉醒吧!异能之黑暗终结者我在南安骗婚的那点事步步攻坚,累累硕果恋综:我的金手指是渣男祖师爷短剧世界里的魔法师北平1917:悠然种田的岁月重生美国财阀私生子开局就分遗产,我痛宰白眼狼们万般体系于己身,证道太初神基!重生九五,股神巨星人间一隅开局签到SSS级天赋,武道斩神官途:我有通天背景却从科员干起杀手女仆与废柴的我刚下山,冷艳总裁逼我领证重回61:我赶山御兽带全家吃肉!都市:重生反派后手眼通天!重生的我只想实现共同富裕重活,病娇的她们嗜我如命荒野求生,资源万倍返利现实抗战之不该遗忘的地方荣耀归来仍是少年星空不败开元之歌