CC读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

“放心吧!这种小事,我不会在意的。”

郭浩笑了笑,朝着眼前二人说到。

“好吧。”

马鑫有些担忧的点了点头。

“走了!”

说着郭浩离开了宿舍。

来到图书馆。

沈落雁果然已经坐在那里了。

“网上的事情……”

郭浩刚刚坐下,此时沈落雁已经抬起头,她的眼神之中充满了担忧,看着郭浩。

“你也刷微博啊?”

看着沈落雁的表情,郭浩微笑着问道。

“不是,是赵雨跟我说的,赵雨让我看了一些评论,你没事吧?”

沈落雁迟疑的看着郭浩问道。

“放心吧,我没事。”

郭浩笑了笑,看着眼前的沈落雁说到。

“不过是些小事,被网络上一些未知生物给攻击而已,这种事情以后还会有很多的。”

“好吧。”

沈落雁点了点头,她眼神之中带着担忧的神色,看着一旁的郭浩,明显她并没有就此放下心来。

只是,她一般不会反驳郭浩。

看着沈落雁的表情,郭浩面上微微有些无奈。

“放心吧!”

郭浩苦笑着朝着沈落雁说到。

“我前天不是出了一次学校吗?”

“嗯。”

沈落雁点了点头。

“我那次是去见大领导了!”

郭浩笑了笑,小声朝着沈落雁说到。

沈落雁眼神之中露出惊讶的神色,看着面前的郭浩。

“大领导???”

“对!”

郭浩笑着点了点头。

“现在你算是放心了吧?”

听到郭浩的话,沈落雁点了点头,既然有大领导撑腰的话,那郭浩肯定是没事了。

对于郭浩的话,沈落雁基本从不质疑。

“那网上的东西你就不要去看了,他们说的太难听了!”

说着话,沈落雁面上露出生气的神色。

嘴巴鼓起的生气模样,在郭浩看起来却十分的可爱。

他轻轻揉了揉沈落雁的头发,面上带着温暖的微笑。

“放心吧!我不会把网上那些人的话放在心上的,谁攻击谁,还不一定呢!”

“好!”

沈落雁点了点头。

她认真的看了郭浩几眼之后,继续开始看书。

郭浩没有急着看书。

现在的他已经过了那个需要努力看书的新手阶段了。

一年时间,郭浩不仅仅刷了系统要求的一百本书,论文也刷了很多篇了,还有很多配套和相关的书籍。

他的知识储备,已经达到了一个不低的水平了。

静静地看了一会儿沈落雁。

郭浩眼神之中闪过一丝恍惚。

自己对沈落雁,是有影响的吗?

郭浩不知道。

但是沈落雁这个妹子,真的非常努力。

重生是自己最幸运的事,而重生之后,能够和沈落雁在一起,则是自己第二幸运的事情了。

郭浩看了一会儿沈落雁之后,渐渐收敛了心思。

没有看网络,他继续开始计算华林猜想。

任何正整数都可表为不超过4个整数的平方和,如:6=2^2+1^2+1^2,14=3^2+2^2+1^2,等等;如果把不足4个的加上0^2,如13=3^2+2^2+0^2+0^2,则任一正整数可表为4个整数的平方和.

还有,任一正整数可表为9个自然数的立方和,19个自然数的四次方和,37个自然数的5次方和.这里自然数包括0.

这一猜想可表述为一般形式:对任一正整数N,存在数r(m),使N可表为r个自然数的m次方和,即 N=(x1)^m+...+(x[r])^m

1909年,希尔伯特证明了一般形式是正确的,解决了r(m)的存在性问题.但r(m)的最小值是多少呢?

这就是郭浩目前需要解决的问题。

除了华林猜想以外,一直到目前,由于g(k)的值严重依赖于正整数较小时的情况,人们提出了一个更强的问题,求对于每个充分大的正整数,可使它们分解为k次方数的个数G(k)。此问题进展较慢,至今G(3)仍无法确定。

这个问题与华林问题拥有极高的相关性,也是目前数学界前沿需要解答的问题。

郭浩低着头,皱着眉头看着眼前的稿纸。

缓缓写出了一行算式。

关于这个猜想,郭浩之前确实有一些灵感,但是真正开始推进这个猜想的时候,郭浩就感觉到了阻碍重重。

也是,关于华林问题,很多顶尖的数学家都有过研究。

包括陈景润老先生在内,很多顶尖的数学大佬,对这个问题多少都是有些涉猎。

但是他们很多都是取得了一些成果。

不过但r(m)的最小值是多少呢?

至今依旧没人知道。

这一个多月以来,郭浩在这个问题上,算是有了一些研究,但进展还是很缓慢,一直都没有触碰到核心的点。

陈景润老先生他们的论文,郭浩已经看了不止一遍了。

陈老用的是圆法来解决这个问题。

只可惜陈老只证明到了g(5)=37。

郭浩试着从陈老的角度开始往下延展,延伸,从圆法的角度来看,这个问题算到g(5)=37,已经是极限了,没办法继续往下算了。

是解题方法的问题么?

郭浩若有所思。

看着面前的问题描述,还有数学公式。

莫名的,郭浩想起了数论领域另外的一个更加着名的数学猜想。

哥德巴赫猜想。

这个问题的表述为任一大于5的整数都可写成三个质数之和。(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)

华林问题的表述,在某种程度上,倒是和哥德巴赫猜想,有种异途同归的妙处。

陈老先生改进了筛法,并且将之用在了哥德巴赫猜想上面,并证明了“1+2”,即他证明了任何一个充分大的偶数,都可以表示为两个数之和,其中一个是素数,另一个或为素数,或为两个素数的乘积,而这被称为“陈氏定理”。

因此,名震世界。

CC读书推荐阅读:请龙出山机车觉醒:开局觉醒重卡金刚炼神丹!御神兽!废材大小姐竟是绝世帝女战太太超凶的卿如春风来影视系统过气明星的反击从上离婚综艺开始娇妻厨娘穿进少女漫后被全员团宠了摄政王大婚后走路带风四合院:修仙到一半,系统跑路这个明星只想放假修真百年归来八零福运甜妻有点飒开局继承生死簿极品小农民至尊龙婿叶辰萧初然全文免费进击的大唐驸马爷超级强者我靠种田名动天下独占金枝万界直播之大土豪姜鸢也尉迟赶山重生1978年打猎枪法如神提取邪神特性,我将成神神医:开局一个绝色女总裁盛世贵女:傲娇郎君惹不得神豪:小学生才做选择,我全都要墨少宠妻成瘾偷爱大佬她五岁了天才宝贝:总裁爹地超给力全民转职:幻想师!实力全靠想象阴师阳徒,医行天下宠妻为后乡村小子的逆袭飞升路让你下山复仇,你竟然震惊世界?国民老公带回家凤凰传奇:歌手翻车,求我们出战美女的超级保镖(问鼎)霸道总裁,强势婚恋秦爷的小祖宗A炸了雷裂苍穹四合院之傻柱的小日子觉醒3S天赋?拖累我的短板罢了你是我一的N次方我的中医路重生之鬼才女王我服侍了十三年的千金瘸了吾欲成凰
CC读书搜藏榜:海贼王之最强冰龙皇上非要为我废除六宫邢先生的冷面女友战国混沌剑神的猴子猴孙们独享一吻成灾:帝少的77次锁情诸神来犯,我在现代重演神话神级狂医在花都都市之最强战神奶爸逍遥修真少年空间之归园田居重生之妃王莫属女导演的爱情电影重生后,我在都市杀疯了重生,我就是回来当厨神的湛少的替婚新妻韩娱之魔女孝渊迷彩红妆公主爱妻你别跑两界真武暗影谍云偏执首席放过我爱如星辰情似海百万调音师:我只好亲自上台了!祸害娱乐圈,你说自己是正经人?都市之邪皇狂少这个傀儡师有点那啥重生娱乐圈之女王至上乡村疯子致富路墨守陈规狂龙下山退休后她只想在娱乐圈养老重生九零恶婆婆商女谋夫回2001陪你长大我在梦里逐步成神变成女孩子,将高冷千金养成病娇亲情凉薄我转身自立门户重生后休了王爷御膳房的小娘子重回七七种田养娃霞光升起金牌宠妃(系统)绯闻男神:首席诱妻成瘾我是导演,却拿着演员的技能邪医修罗:狂妃戏魔帝异世倾心穿梭无限可主神是个废柴重回七九撩军夫重生之拒嫁豪门
CC读书最新小说:变异称霸:我身体竟然发生了异变寒地孤影七宗罪之天佑瑾华大龄剩男建帝国重生年代:从知青下乡开始躺赢半岛:从去酱油瓶上班开始三通小小说冷面女总裁:爱上普通小直男骂谁害群之马呢,叫我警神不敢在群里喊老婆,怕她们全回话都市妖魔录穿越成舔狗他爸,我才是天命主角系统来了?我穿书了??????让你当保镖,没让你勾搭雇主惊!我家粮油店通古今,任我周游各小世界警察:从送所长老婆回家开始崛起重生1982:俩个女儿萌爆了!汉奸搅屎棍后续捡回家的妹妹总是哭着求亲亲分手后:前女友仰望我登顶深山林场:重返83打猎发家片段人生和辉煌无关桃运乡村小仙医风雨兼程的逆袭路三魂九命之超能摄影师老六老师:我受的罪,你们得加倍身为千金的魔女是和我同居的会长重生一次,可不是来遭罪的!华夏探神三十八岁桃花劫姜村医的都市田园生活全民御兽:修真大佬在都市官场:书记的第一红人穿越60:我在南锣鼓巷82号娱乐:从跑男开始成为世界顶流凡人寻长生:科学修仙录高武:御兽越多,我越强!直播带货:售后别人赔三我赔十开局重生被退学,然后我逆袭了我真不想懒散啊情满四合院之傻柱重生我觉醒了天赋之灵庭审直播鹦鹉案,我把法官送进去谦谦邻家子:飒飒风灵侠重生渔村:1982现代都市的鉴宝王者屠狗之辈桃花山里开觉醒中途失败召唤神兽我原地起飞全民转职:百万亡灵无限进化