CC读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

林枫当然知道,自己正在改变世界。

甚至于一开始林枫也有点激动。

不过很快林枫也就恢复平常心了。

因为较真地讲,从林枫重生的第一天开始,林枫就已经在改变着世界了。

因为林枫的到来,这个世界正在一点点地变成林枫的形状。

因此对于马库斯的恭维,林枫只是笑了笑。

“对了,你们还可以关注一下另一件事。”林枫突然说道,“关于网络中的‘注意力机制’你们也可以注意一下,它在未来会在很多领域展现出惊人的威力,尤其是在自然语言处理(NLp)方面。这种机制能让网络更聪明地选择重点关注哪些输入信息,而不是一视同仁地对所有输入进行处理。”

“注意力机制?”马库斯更迷茫了,自然语言处理虽然在2014年也是热门研究方向,但“注意力”这个词在他的印象里一片空白,显然这个还没被用到深度学习领域。

马库斯显然意识到,今天这场对话比他预想的更具启发性。

林枫不经意间的一些观点,很有可能给深度学习领域带来革命性突破。

马库斯此刻觉得他仿佛正在见证一些颠覆性理念的诞生。

他不禁有些激动,忍不住追问道:“林,你刚刚提到的‘注意力机制’……你能多说点吗?你知道,现在的神经网络普遍都是在处理图像、视频数据等结构化信息,但语言这类非结构化数据一直是个棘手的领域。你提到的这个‘注意力’机制,真的能大幅提升自然语言处理的能力?”

林枫笑了笑,心里明白马库斯现在的困惑。

2014年这个时间点上,自然语言处理领域确实还没有完全进入“注意力机制”主导的时代,许多人依旧在用传统的RNN和LStm(长短期记忆网络)来处理时间序列数据,语言模型的效果虽有进步,但远未达到后来transformer带来的质变。

林枫深吸一口气,试图在不暴露太多未来科技的前提下,用马库斯能理解的方式解释:“你可以把‘注意力机制’想象成一种更聪明的权重分配系统。当你阅读一篇文章的时候,人的大脑并不会对每个单词都投入相同的注意力,某些词或句子对理解整个文章的意义更为关键。‘注意力机制’的核心思想就是类似的,它让网络学会‘关注’输入信息中的重要部分,而不是每个部分都平等对待。”

马库斯眉头微蹙,似懂非懂。

林枫也没有催促,姑且留待马库斯思考。

过了一会,马库斯若有所得,但依然还是有困惑,马库斯问道:“这跟我们现在使用的网络结构有什么本质区别呢?毕竟网络权重也是在调整不同的输入节点,按理说它也能‘选择性地关注’重要的信息。”

林枫点了点头,继续解释道:“是的,当前的网络权重确实会根据数据自动调整,但问题在于它们的调整方式太过机械。

网络层层堆叠后,很容易出现‘信息稀释’的现象,尤其是在处理长序列数据时,早期输入的信息可能会在网络的深层逐渐被削弱,甚至丢失。而‘注意力机制’则不同,它会在每一步都重新评估所有输入的影响力,并动态调整每个输入的权重,保证关键的信息不会因为层数的增加而被遗忘。”

马库斯若有所思地反复琢磨着林枫的话:“动态调整……你的意思是说像是一个随时监控并修正网络学习方向的系统?”

“可以这么理解,”林枫笑了笑,“尤其是在处理自然语言时,你会发现信息的相关性是动态变化的。句子开头的某个词,可能会对后面一句话的解释至关重要,甚至决定整段话的含义。

这个时候我们就需要引入注意力机制了,如果没有这种‘注意力机制’,网络可能很难处理这种长距离依赖。”

“长距离依赖……”

马库斯嘴里嘟囔着,心中反复琢磨。

良久,眼中闪过一丝明悟。

在人工智能的自然语言处理中的确有这种问题,网络在处理长文本时常常会因为距离太远而丢失关键信息。这也是为什么传统的RNN和LStm虽然能解决一部分问题,但它们的记忆能力仍然有限,尤其在处理长文本或复杂句子时,模型的性能往往不尽如人意。

林枫看到马库斯的反应,知道他已经触摸到一些未来即将到来的人工智能变革的端倪,便稍稍放缓了语气:“我倒是觉得你们可以考虑在网络中引入‘自注意力机制’,让每个输入节点与其他所有节点进行互动,通过这种机制,网络可以自适应地识别哪些输入对当前的输出更重要。这种方式能够极大提升模型对长文本的处理能力,也会使训练更有效率。”

“自注意力机制?”马库斯低声重复着这个陌生的术语。

林枫点头:“是的,等你们进一步研究这个方向时,会发现它不仅适用于自然语言处理,甚至可以扩展到其他领域,比如图像处理、视频分析等。这种机制将改变网络处理复杂数据的方式,使得信息处理更精准,学习过程更稳定。”

马库斯的思绪被彻底激发了。他看着林枫,忍不住感慨道:“你这些想法……感觉远远超出了我目前的理解范围,甚至我感觉这些思路已经超出很多传统的共识了。

我们一直在深度学习的框架内打转,却没想到可以有这么多突破性的新思路。

真没想到你对人工智能居然也有这么深厚的造诣?”

林枫反问:“这算很深的造诣吗?这些不是很简单吗?”

林枫还真不是装逼。

就林枫从事的这些换做是后世一个普通的人工智能从业者也能说出个大概。

虽然说起来挺复杂,但本质上是因为林枫也不是专业讲师。

有些事情,心里是明白的,具体也是懂的。

但想要做到深入浅出那肯定是有难度。

因此也就是听起来依然还是有点抽象。

不过客观来讲,确实也不怎么难。

CC读书推荐阅读:机车觉醒:开局觉醒重卡金刚凤凰传奇:歌手翻车,求我们出战长生道士觉醒3S天赋?拖累我的短板罢了噬天龙帝离婚后,夫人又把顾总撩哭了都市极品至尊医仙末世御兽:开局契约斩神巨龙男配要上位(高干)分手三天,前女友竟成我邻居我的超能力每周更新医官情瘦邢先生的冷面女友逍遥修真少年重生,我就是回来当厨神的ABO:偏执大佬的小美人又甜又软变身女配,开局强吻白莲花女主!法医先生倒追妻:娇妻你别跑御灵师,抓只狐狸当老婆我真的只是个管后勤的辅助啊万倍强化,先天神体开局直接开挂瞳系最废?开局觉醒永恒万花筒白粥知他意我每个手指都有异能变成猫娘没什么不好啦重生崛起从退婚开始云海灵龙人到中年,觉醒每日结算系统重瞳开天:开局融合仙凰女帝乌纱重朱元璋穿越崇祯道爷不好惹参加高考的我,和系统谈起了恋爱仙医凰后我,嚣张平头哥天选之子第五宣滚!东山再起你是谁?转生成为富二代,老天亲自送老婆女帝直播攻略大明星从直播开始我一句话,死刑犯在法庭无罪释放完美医生奶爸:绝色女神叫我去医院签字高考落榜,我靠捕鱼走向人生巅峰重生2004:我写字能赚钱一拳赘婿元卿凌结算系统:每天增加一倍收入四合院许大茂的精彩人生重生之我还是个普通人
CC读书搜藏榜:海贼王之最强冰龙皇上非要为我废除六宫邢先生的冷面女友战国混沌剑神的猴子猴孙们独享一吻成灾:帝少的77次锁情神级狂医在花都都市之最强战神奶爸逍遥修真少年空间之归园田居重生之妃王莫属女导演的爱情电影重生,我就是回来当厨神的湛少的替婚新妻韩娱之魔女孝渊迷彩红妆公主爱妻你别跑两界真武偏执首席放过我爱如星辰情似海百万调音师:我只好亲自上台了!祸害娱乐圈,你说自己是正经人?都市之邪皇狂少这个傀儡师有点那啥重生娱乐圈之女王至上乡村疯子致富路墨守陈规狂龙下山退休后她只想在娱乐圈养老重生九零恶婆婆商女谋夫回2001陪你长大我在梦里逐步成神变成女孩子,将高冷千金养成病娇亲情凉薄我转身自立门户重生后休了王爷御膳房的小娘子重回七七种田养娃霞光升起金牌宠妃(系统)绯闻男神:首席诱妻成瘾我是导演,却拿着演员的技能邪医修罗:狂妃戏魔帝异世倾心穿梭无限可主神是个废柴重回七九撩军夫重生之拒嫁豪门从无限轮回开始制霸全球妻叛,发现岳母的秘密老婆忌日,我重生了
CC读书最新小说:都破产了,谁还在乎征信啊重生80年,靠回收老物件逆袭被关女子监狱十八年,出狱即无敌雷灵鬼罚拳渡星河劫网游之鹏婷恋曲御兽:我创建了星辰教派征战超凡诸天消费返利现女神也迷糊被迫加入妖精籍的我成为至强克夫命?二嫁帝王当宠妃妖月悬空,开局觉醒双星核考上清北后,黑道老爹气进ICU不朽从二零一四开始重生之都市极品天尊重生高三,我一定要改写命运失忆后,她们都说是我女朋友龙凤阴阳诀希望的田野上陪女神聊天,越撩越有钱恋综:没吃过恋爱的苦,我想试试软萌校花太粘人,我好爱提升员工工资,你说我扰乱市场?权力巅峰:从乡镇税务局开始高手下山,五位师姐助我发家致富从前有个协谷镇当世界只能由一人拯救高武:从继承李氏开始老婆大明星,我在家带娃玩军火!重生非洲,我成了奥德彪终末的十二神座运掌乾坤:我的都市外挂开局小火龙,这我怎么输啊?超时空交易:我的任意门去万界爱已远去:从舔狗到赢家的蜕变女儿求救,十万大军齐聚从量子机开始,突破美西方封锁别拿火球不当球三哥与凤姐的浪漫爱情故事我在鹰酱当杀手御兽,我的契约兽超震惊!!!女总裁求复合遥远的回航重生电工也能牛上天哥斯拉会动,养在动物园不合理?我一个算命的居然能斩神逆天行万里大一实习,你跑去749收容怪物娱乐:回到过去,靠国足起家顶尖掮客