CC读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

随后,江寒操作着电脑,心无旁骛,很快就进入了状态。

夏雨菲也不再来打扰他,拿着手机,半躺在床上,自己上网、听歌。

江寒将高老师发送来的part012.rar和part013.rar下载下来,连同夏雨菲下载的前11个文件,放在了同一个文件夹中。

然后在第1个文件上点击鼠标右键,选择用WinRAR解压缩,很快就得到了数据包。

一共两个文件,train-images-idx3-ubyte与train-labels-idx1-ubyte。

idx3-ubyte和idx1-ubyte都是自定义的文件格式,官网上就有格式说明。

train-images文件大小超过1g,保存了20万张手写数字的图片信息。

而train-labels中则存储了20万个标签数据,与train-images一一对应。

和公开版本的MNIST不同,用于比赛的这个手写数字数据集,数据量要大出好几倍。

Kaggle官方将数据集分为两部分,训练集train向参赛选手公开,而测试集test则内部保存。

比赛的形式很简单,大家根据公开的训练集,编写自己的程序,提交给主办方。

主办方用不公开的测试集数据,对这些程序逐一进行测试,然后比较它们在测试集上的表现。

主要指标是识别率,次要指标是识别速度等。

这是“人工神经网络”在这类竞技场上的初次亮相,江寒可不想铩羽而归。

事实上,如果想追求更好的成绩,最好的办法,就是弄出卷积神经网络(CNN)来。

那玩意是图像识别算法的大杀器。

在“机器学习”这个江湖中,CNN的威力和地位,就相当于武侠世界中的倚天剑、屠龙刀。

CNN一出,谁与争锋!

只可惜,这个东西江寒现在还没研究出来。

现上轿现扎耳朵眼,也来不及了。

再说,饭要一口口吃,搞研究也得一步步来。

跨度不能太大喽,免得扯到蛋……

所以在这次比赛中,江寒最多只能祭出“带隐藏层的全连接神经网络”(FCN)。

有了这个限制,就好比戴着镣铐跳舞,给比赛平添了不少难度和变数。

那些发展了几十年的优秀算法,也不见得会输普通的FCN多少。

所以,现在妄言冠军十拿九稳,还有点为时过早。

不过,有挑战才更有趣味性嘛,稳赢的战斗打起来有什么意思呢?

江寒根据官网上找到的数据格式说明文档,编写了一个文件解析函数,用来从两个train文件中提取数据。

train-images-idx3-ubyte的格式挺简单的,从文件头部连续读取4个32位整形数据,就能得到4个参数。

用来标识文件类型的魔数m、图片数量n、每张图片的高度h和宽度w。

从偏移0016开始,保存的都是图片的像素数据。

颜色深度是8位,取值范围0~255,代表着256级灰度信息,每个像素用一个字节来保存。

然后,从文件头中可以得知,每张图片的分辨率都是28×28。

这样每张图片就需要784个字节来存储。

很容易就能计算出每张图片的起始地址,从而实现随机读取。

如果连续读取,那就更简单了,只需要每次读取784个字节,一共读取n次,就能恰好读取完整个文件。

需要注意的是,图像数据的像素值,在文件中存储类型为unsignedchar型,对应的format格式为B。

所以在Python程序中,在image_size(取值为784)这个参数的后面,还要加上B参数,这样才能读取一整张图片的全部像素。

如果忘了加B,则只能读取一个像素……

train-labels-idx1-ubyte格式更加简单。

前8个字节是两个32位整形,分别保存了魔数和图片数量,从偏移0009开始,就是unsignedbyte类型的标签数据了。

每个字节保存一张图片的标签,取值范围0~9。

江寒很快就将标签数据也解析了出来。

接下来,用Matplot的绘图功能,将读取出来的手写数字图片,绘制到屏幕上。

然后再将对应的标签数据,也打印到输出窗口,两者一比较,就能很轻松地检验解析函数是否有问题。

将解析函数调试通过后,就可以继续往下进行了。

首先要将图片的像素信息压缩一下,二值化或者归一化,以提高运算速度,节省存贮空间。

像素原本的取值范围是0~255。

二值化就是将大于阈值(通常设为中间值127)的数值看做1,否则看做0,这样图片数据就转换成了由0或者1组成的阵列。

归一化也比较简单,只需要将每个像素的取值除以最大值255,那么每个像素的取值空间,就变成了介于0和1之间的浮点数。

两种手段各有利弊,江寒决定每种都试一下,看看在实践中,哪个表现更好一些。

由于江寒使用的是全连接网络,而不是卷积神经网络,所以还要将2维的图片,转换成1维的向量。

这个步骤非常简单,将二维的图片像素信息,一行接一行按顺序存入一维数组就行。

事实上,在解析数据文件的时候,已经顺便完成了这一步,所以并不需要额外的操作。

20万张图片,就是20万行数据。

将这些数据按顺序放入一个×784的二维数组里,就得到了Feature。

Lable的处理比较简单,定义一个具有20万个元素的一维整形数组,按顺序读入即可。

江寒根据这次的任务需求,将20万条训练数据划分成了2类。

随机挑选了18万个数据,作为训练集,剩余2万个数据,则作为验证集validate。

这样一来,就可以先用训练集训练神经网络,学习算法,然后再用未学习过的验证集进行测试。

根据FCN网络在陌生数据上的表现,就能大体推断出提交给主办方后,在真正的测试集上的表现。

写完数据文件解析函数,接下来,就可以构建“带隐藏层的全连接人工神经网络”FCN了。

类似的程序,江寒当初为了写论文,编写过许多次。

可这一次有所不同。

这是真正的实战,必须将理论上的性能优势,转化为实实在在、有说服力的成绩。

因此必须认真一些。

打造一个神经网络,首先需要确定模型的拓扑结构。

输入层有多少个神经元?

输出层有多少个神经元?

设置多少个隐藏层?

每个隐藏层容纳多少个神经元?

这都是在初始设计阶段,就要确定的问题。

放在MNIST数据集上,输入层毫无疑问,应该与每张图片的大小相同。

也就是说,一共有784个输入神经元,每个神经元负责读取一个像素的取值。

输出层的神经元个数,一般应该与输出结果的分类数相同。

数字手写识别,是一个10分类任务,共有10种不同的输出,因此,输出层就应该拥有10个神经元。

当输出层的某个神经元被激活时,就代表图片被识别为其所代表的数字。

这里一般用softmax函数实现多分类。

先把来自上一层的输入,映射为0~1之间的实数,进行归一化处理,保证多分类的概率之和刚好为1。

然后用softmax分别计算10个数字的概率,选择其中最大的一个,激活对应的神经元,完成整个网络的输出。

至于隐藏层的数量,以及其中包含的神经元数目,并没有什么一定的规范,完全可以随意设置。

隐藏层越多,模型的学习能力和表现力就越强,但也更加容易产生过拟合。

所以需要权衡利弊,选取一个最优的方案。

起步阶段,暂时先设定一个隐藏层,其中包含100个神经元,然后在实践中,根据反馈效果慢慢调整……

确定了网络的拓扑结构后,接下来就可以编写代码并调试了。

调试通过,就加载数据集,进行训练,最后用训练好的网络,进行预测。

就是这么一个过程。

江寒先写了一个标准的FCN模板,让其能利用训练数据集,进行基本的训练。

理论上来说,可以将18万条数据,整体放进网络中进行训练。

但这种做法有很多缺点。

一来消耗内存太多,二来运算压力很大,训练起来速度极慢。

要想避免这些问题,就要采取一定的策略。

CC读书推荐阅读:户口本死绝后,大佬她红遍全网师座,请低调最佳神医女婿逃荒种田:满级大佬穿成极品长姐噬天龙帝限制级军宠:七叔,我疼游戏选项睿智?我开局篡改选项!医官情瘦都市之武道神医宝可梦修改器开局分家,真少爷一家悔哭了医笑倾城特种兵之神级提取系统脑海里飘来一座废品收购站我的纯情女上司独占偏宠:陆医生他蓄谋已久踏星陆隐极品家丁医王出狱,重囚犯集体送行弃妃,你又被翻牌了!韩娱之灿拒嫁豪门:少奶奶99次出逃冷冰冰的战神王爷堵门求我疼疼他系统大人太帅气重生七零:肥妻要翻身双穿:开局面包换女仆女帝的现代生活喝醉后,女神让我忘了她我是导演,却拿着演员的技能帝国总裁霸道宠人到中年,觉醒每日结算系统女帝直播攻略暴徒出狱重生:大帝归来炼神丹!御神兽!废材大小姐竟是绝世帝女我家大佬是神兽玩家超正义只有怪兽可以吗废柴召唤师:逆天小邪妃隐主龙玉圣龙图腾冰冷总裁未婚妻绝品高手混花都重生的李峰青梅有点酸,竹马你别闹超强打工仔开局当替身,真千金在豪门杀疯了我的六个姐姐,由我来守护!极品仙尊之高高在下豪门重生之撩夫上瘾
CC读书搜藏榜:海贼王之最强冰龙皇上非要为我废除六宫邢先生的冷面女友战国混沌剑神的猴子猴孙们独享一吻成灾:帝少的77次锁情诸神来犯,我在现代重演神话神级狂医在花都都市之最强战神奶爸逍遥修真少年空间之归园田居重生之妃王莫属女导演的爱情电影重生后,我在都市杀疯了重生,我就是回来当厨神的湛少的替婚新妻韩娱之魔女孝渊迷彩红妆公主爱妻你别跑两界真武暗影谍云偏执首席放过我爱如星辰情似海百万调音师:我只好亲自上台了!祸害娱乐圈,你说自己是正经人?都市之邪皇狂少这个傀儡师有点那啥重生娱乐圈之女王至上乡村疯子致富路墨守陈规狂龙下山退休后她只想在娱乐圈养老重生九零恶婆婆商女谋夫回2001陪你长大我在梦里逐步成神变成女孩子,将高冷千金养成病娇亲情凉薄我转身自立门户我的世界,又要毁灭了重生后休了王爷重回1976,下乡当知青御膳房的小娘子重回七七种田养娃霞光升起金牌宠妃(系统)绯闻男神:首席诱妻成瘾我是导演,却拿着演员的技能邪医修罗:狂妃戏魔帝异世倾心财阀的快乐你不懂
CC读书最新小说:谍战不站队,孤狼搅动上海滩风云视频通万界:开局猴哥上榜人格异术录乡野无敌小医仙重生都市之医武无双遭强拆忠魂墓地,无数功勋曝光了出狱送棺材,未婚妻全家吓破胆重生93:赶海运气好亿点,妹妹被我宠翻天神豪:有钱后,长腿校花爱意狂涌开局成僵尸:躺回现代高武:你管这叫功德成圣?躺成影帝,什么叫那札不舍得跟我分手?大佬卡牌师重生成猫也要玩游戏黄金年代:开局被逼辍学打工养家科技工厂:丧尸?T800懂吗?重回1978:从换亲女知青开始四合院:我的老婆力拔山兮气盖世从边陲小镇的猎人,踏上武道之巅天降神物,我在末世狂追老板娘重生70:从拒绝渣女开始致富从爆肝箭术开始,我是人间真武神我在异世界中修改规则重生58:带着系统闯天下神医下山,首富全家跪求救命!女儿都火化了,还陪白月光过生日?命运双生:长夜将明重生80,窝在渔村赶海,我把妻女宠上天穿越从欢乐颂开始走向巅峰美女总裁的僵尸老公母星被穿?我开启了修仙时代军工厂风云往事穿越76,出海捞金妙妙妙不一样的海岛之行三世余烬武功尽失,只能去当魔法师了假婚夫妻到期,我走你怎么急了?都市战神的无敌系统重生80打猎养家,开局挖到野山参!我的26岁女总裁特战兵王痴傻五年,入赘后开始逆袭重生1990:我靠鉴宝发家致富开学孕吐,姐姐,你是认真的吗高冷校花倒追我后,成了我的救赎穿书反派,开局和高冷女主离婚!刚毕业,被地府体制收编了儿子你随便浪,你爸真无敌!中外对账,洋妞和我有婚约?绝世极品仙医